

Compound-nucleus Formation Following Direct Interactions to Highly-excited Final States

Frank Dietrich

CNR* 2007

October 22-26, 2007

UCRL-PRES-235738

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Objectives

We examine an important assumption of the surrogate reaction mechanism:

The residual nucleus B following a direct reaction is an equilibrated compound nucleus

The problem:

B can decay promptly by emitting particles into the continuum

Possible decay mechanisms need to be studied for each type of direct reaction used in surrogate experiments, such as (${}^{3}\text{He},\alpha$), (α , α '),(d,p), etc.

Examples of prompt decays in current experiments

- (³He,α): Pickup process; creates a hole in the residual nucleus. This is may interact with other nucleons and eject a neutron or proton into the continuum (nuclear Auger effect, or rearrangement escape)
- (d,p): Stripping process; creates a particle (neutron) in residual nucleus, which
 is unbound in the case of surrogate reactions. The neutron may then be emitted
 into the continuum (direct escape)
- (α,α') : Inelastic scattering; creates coherent superpositions of particle-hole pairs. Both rearrangement escape and direct escape need to be considered

(d,p) is particularly important for reverse-kinematics experiments at RIB facilities; current tests at ORNL, LBL

Here we examine escape effects quantitatively in a closely related reaction: direct neutron capture, (n, γ)

$$d + X \rightarrow (X + n) + p$$

 $n + X \rightarrow (X + n) + \gamma$

Just erase the proton! Theory for final-state decay is the same for both reactions

2 interfering terms in direct-semidirect capture, which is DWBA theory for nucleon radiative capture

Final state may be unbound!

Projectile radiates and is captured in well

- 1) Projectile excites giant dipole resonance and is captured;
- 2) Giant dipole collapses and emits the gamma ray

Effective radial electromagnetic operator:

Theory ca. 1995 for capture to unbound final states exhibited both compound formation and direct escape of captured nucleon

PHYSICAL REVIEW C

VOLUME 52, NUMBER 1

JULY 1995

Fluctuation effects in radiative capture to unstable final states: A test via the 89 Y (\vec{p}, γ) reaction at $E_p = 19.6$ MeV

W.E. Parker et al.

$$\frac{d\sigma}{dE_{\gamma}\,d\Omega_{\gamma}} = \sigma_1 + \sigma_2$$
 Compound formation Direct escape

Absorption at **r** by imaginary potential **W**

$$\sigma_{1} = -\frac{1}{\phi_{inc}} \frac{2}{\hbar} \left(\frac{1}{\hbar c} \right)^{3} E_{\gamma}^{2} \int d^{3}\mathbf{r} \, W(\mathbf{r}) \left| \left\langle \mathbf{r} \middle| G^{(+)} H_{\gamma} \middle| \overline{\Psi}_{i}^{(+)} \right\rangle \right|^{2}$$

$$\sigma_{2} = \frac{1}{\phi_{inc}} \frac{2\pi}{\hbar} \left(\frac{1}{\hbar c} \right)^{3} E_{\gamma}^{2} \sum_{\mathbf{p}} \left| \left\langle \widetilde{\chi}_{\mathbf{p}}^{(-)} \middle| H_{\gamma} \middle| \overline{\Psi}_{i}^{(+)} \right\rangle \right|^{2} \delta(E - E_{p})$$

Similar to calculation for bound final state

Calculations of $^{89}Y(p,\gamma)$ and (n,γ) show compound formation is dominant but escape also happens

For proton capture, escape is unimportant – suppressed by Coulomb barrier

For neutron capture, escape contributes at ~15% level

For both reactions, we see effects of giant-dipole resonance as well as single-particle spectroscopy contained in optical potential for final state

Incident energy: 19.6 MeV

Extended DSD theory, supplemented by compound capture, well described $^{89}Y(p,\gamma)$ experiment

The theory also well predicted angular distributions and analyzing powers of the gammas observed in the polarized-beam experiment reported in Parker et al.

Incident energy: 19.6 MeV

Spectrum at 90° for γ

Doing similar calculation for $^{89}Y(n,\gamma)$ shows significant (~15%) probability of direct escape

What are the consequences for the spin-parity distributions of the residual nucleus? These can be calculated.

Cross sections and compound formation probabilities calculated vs. orbital angular momentum L for 3 final-state energies

Odd-even effect in cross section: single-particle spectroscopy Compound-formation probability variation: angular-momentum barrier

Summary and conclusions

- Calculations of final-state L distributions and compound formation probabilities have been made for 89Y(n,γ)
 - ☐ Results are understood; we find significant direct-escape probabilities that are dependent on L
- These calculations provide guidance for understanding compound formation in (d,p) – should be qualitatively very similar
- (d,p) calculations should (and can) be carried out in DWBA, using same formalism for treating unbound final states

Results suggest using single-nucleon stripping as direct interaction in surrogate experiments requires careful theoretical interpretation

Further work needs to be done on other processes involving rearrangement

